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90024-1555, USA 

Received 10 May 1989 

Abstract, We consider an interacting particle system on the one-dimensional integer lattice 
in which vacant sites become occupied at rate A, and clusters of adjacent occupied sites 
die at a rate equal to their size. We establish the existence and uniqueness of an invariant 
measure when A is less than 1, in addition to establishing that the distribution of cluster 
sizes in equilibrium decays exponentially. 

In this letter we consider an interacting particle system on the one-dimensional integer 
lattice Z in which vacant sites become occupied at rate A and clusters of n occupied 
adjacent sites become simultaneously vacant (or ‘die’) at rate n. We will refer to this 
system as the cluster model. This can be pictured as follows: trees are born at vacant 
sites at rate A, and lightning strikes sites at rate 1. When lightning strikes any tree in 
a cluster, the entire cluster instantly catches fire and burns down. We show that for 
A between 0 and 1, there exists a unique invariant measure. A corollary to the proof 
of this result is that the distribution of cluster sizes in the invariant measure decays 
exponentially. 

Systems such as the cluster model discussed here are suggested by certain cellular 
automata, which are reminiscent of the evolution of sandpiles ([1, 21). Numerical 
studies reveal that a wide range of automata evolve to an attractor which displays 
large fluctuations in avalanche size, indicative of behaviour of systems near criticality. 
The models all have the property that any site can be occupied by an arbitrary number 
of particles (grains of sand)-an attribute which so far has impeded rigorous analysis 
of all but the simplest models (which do not exhibit this interesting behaviour). 

Consequently, it is our intention to examine models which can exhibit large events 
on the relatively simple state space X = (0, 1}=. We will denote the configuration of 
the cluster process at time t by q,, where q , ( x )  = 1 means that the site x is occupied 
at time t, where q,(x) = 0 means the site is vacant. Recently, we learned that numerical 
simulations had been done on similar models by the same groups mentioned above 
[3], as well as by Henley [4]. 

To state our result concretely, we first restrict the state space to the subset of X 
consisting of configurations with an infinite number of zeros on either side of the 
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origin. We denote this subset of configurations by X ’ :  

X ’ =  V E X :  c ( l - v ( x ) ) =  ( l - q ( x ) ) = O o  . 
x s o  x-0 I 

(It is clear that an infinite cluster would die instantly, and this behaviour would yield 
continuity problems which are not germane to the questions we would like to address.) 
In this state space, we define our process by prescribing the following rates: 

(i)  vacant sites become occupied at rate 1; 
(ii) clusters of n adjacent occupied sites become vacant simultaneously at rate n. 

It is clear that this process is not attractive or reversible. Furthermore, there does not 
appear to be a natural dual process ( [ 5 ] ) .  The central result that we prove in this letter 
is encapsulated in the following theorem. 

Theorem 1 .  When A < i ( f i -  1) there exists a unique invariant measure on X ’  for the 
cluster process 17,. 

Remark. This upper limit on A in theorem 1 is a consequence of the ease of exposition. 
At the end of this letter we describe how to extend the upper bound to a number 
greater than 1. 

Denote the invariant measure announced in theorem 1 by F. Then a consequence 
of the proof of theorem 1 is the following corollary. 

Corollary of the proof. Denoting the size of the cluster surrounding x by N ( x ) ,  we have 

p ( N ( x ) = n ) s n  - 
( A  1)“ 

Proof. We begin by making a brief remark on the construction of the process 7, (details 
will follow in a subsequent paper). Denote the set of bounded continuous functions 
on X ‘  by C ( X ’ ) .  A sequence of functions f n e C ( X ‘ )  converges to f e C ( X ’ )  if 
sup,,I(f,(I (00 and if fn + f uniformly on compact sets, where 11 11 denotes the uniform 
norm. We construct a semigroup on C ( X ‘ )  as a limit of process on finite intervals. 

Let Zm,n = { m ,  m + 1, . . . , n } ,  and let Xm,n = (0, l } z , ~ i . * ~ .  Denote the set of all functions 
on Xm,n by C m T f l .  We define a process .I?”’ with state space X,,,,, which evolves just 
like 7, described above, with the assumption that v Y ” ( m  - 1 )  = rlT.”(n + 1) = 0. It can 
be shown that a well defined limiting process exists by taking m + -a and n + 00 (the 
construction is essentially identical to that which appears in chapter VII, section 3 of 

The centrepiece of the proof of theorem 1 is the following graphical representation 
of the process (see figure 1). With each site x E 2 are associated two Poisson processes 
B , , ( x )  at rate A, and D,,(x) at rate 1. The arrival times of the B , ( x )  process (full circles 
(0)  in figure 1) will denote birth times at site x,  so that if site x is vacant and a birth 
time occurs, site x becomes occupied. The arrival times ef the D , ( x )  process (crosses 
( x )  in figure 1 )  denote death marks, which have the property that when site x is 
occupied and a death mark occurs, site x and all sites in the cluster containing x 
become vacant. One should picture a horizontal integer lattice representing the spatial 
location of each site, and emanating from each site is a vertical coordinate representing 
time. 

[SI). 
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Figure 1. A realisation of the graphical representation is shown, along with its action on 
the initial configuration shown at the bottom of the figure. 

We will use a coupling argument based on the graphical representation to show 
the existence of a unique invariant measure. The basic coupling consists of first placing 
the birth and death marks according to the B, and D, processes on the time axes, and 
then running the two processes q, and 5, using these marks. In this way the marginal 
distributions of (q,, 5,) are the ones associated with the uncoupled process, but the 
evolutions of the two coupled processes are related via the graphical representation. 

We will also construct an independent process 6, using the graphical representation. 
In this process, births occur at rate A and deaths occur at rate 1 independently at each 
site. The same graphical representation used for the cluster model can be used for 
by declaring that the effect of a death mark is to vacate only the site on which the 
mark appears (as opposed to removing the entire cluster associated with that site). 
With this coupling it is clear that if q, and 6, are started from the same initial 
configuration, or, more generally, if qo s to (i.e. q o ( x )  s t0(x) Vx), then q, s 6, for all 
t with the usual ordering. 

The existence of an invariant measure p from the usual soft arguments involving 
compactness fail here, due to the fact that the state space X’ is not compact. However, 
the proof of existence is actually an immediate consequence of coupling between the 
cluster process q, and the process 6, in which births and deaths occur at each site 
independently and at rate 1. 

As stated above, if qoS to, then q, s 6, for all t. The process q, is a Feller process 
on X’, and the process started from any distribution of configurations in X‘ remains 
supported on X’ almost surely for all subsequent times, due to the fact that the same 
is trivially true for the f I  process. Since X ‘ c  X = {0,1}= which is compact, there exists 
at least one invariant measure on X‘. 

We will prove ergodicity by establishing that for any two initial configurations qo 
and CO, given any interval of sites Z,,,,, then: 

lim 1-m P ( q , ( x ) = 5 , ( x ) V x ~ Z , , , ) = l .  (1) 

This will imply ergodicity (see [ 5 ]  p 130), since, by taking any bounded continuous 
function f on X’, and letting p be an invariant measure, we obtain 

f d p  - ESf(5 , )  = [E”f(w) - ESf(C,)lp(drl) 
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which tends to zero by (1) as t + 00, where E C  denotes expectation with respect to the 
measure on processes starting with initial configuration 5. Therefore, 

To prove (1) we consider 7, and 5, coupled via the graphical representation. The 
idea is to define left and right boundaries of a region containing the origin on which 
the two processes agree; no claim is made as to agreement or disagreement outside 
this region. From now on we will concentrate on the right boundary, the left boundary 
will evolve in an analogous manner. The picture to have in mind is the two configur- 
ations written in the following way: 

7, . . . 001 1001 1 I101 0 . . . 
5,.  . eo01 1001 1 ) O l O O .  . a 

where the symbol I occurs just after the location of the right edge, denoted R I .  In this 
example, if the next event is the appearance of a death mark at the site R,, then the 
edge can move right by one unit. If, however, the next event is a death mark at the 
site R, + 1, then the edge must move left two sites to find agreement between the two 
configurations (in fact, our rules may have the edge move farther to the left in this 
case). Note that ‘disagreement’ cannot propagate beyond the first common zero. 

The precise rules for the evolution of R, will make R, a random walk with positive 
drift. For reasons that will become clear, we will require that the right edge move 
right by leaving zeros in its wake. Both processes will be simultaneously equal to zero 
at the origin at an infinite sequence of times (for example, whenever a death mark hits 
the origin). Therefore, any time either of the edges returns to the origin, we can wait 
until the next death mark hits the origin and restart the process. With probability one, 
eventually the transience of the left and right edges will yield agreement on any interval 
for all sufficiently large times. 

We begin by defining the following stopping times which indicate the occurrence 
that 7,(0) = 0 and &(O) = 0 after a disagreement: 

T~ =inf{t>O: vr(O)=5,(0)=0) 

T,  = inf{t > T ~ - ~ :  ~ ~ ( 0 )  = &(O) = 0 and 3s E ( T ~ - ,  , t ) :  ~ ~ ( 0 )  # l c ( 0 ) } .  

At time T ]  we set R, to be the location of the rightmost site so that all points between 
the origin and R, are zeros 

R,, =sup{x>O: v r , ( z )  = l , , ( z )  =OVz: 0 s  2s x}. 

As we have said, the left edge is to be dealt with in a symmetric fashion. We now 
prescribe the evolution of R I .  

Denote the time of the ith jump of R, by U,, where we take crI = T ~ ,  and the position 
of RI after at time U, by R , .  We begin by specifying a set of events A: .J j ) ,  indexed 
by j ,  which, for any values of n, x and 1, are disjoint. These events will involve events 
at sites y: x s y d x + n occuring at times after t for some finite n. These events are 
constructed so that the occurrence of any of the A:,,G) moves R, right by at least one 
step, in such a way that the new sites of agreement are all occupied by zeros. If none 
of these events occur, then by default the edge will move left (the distance that it 
jumps left will be discussed momentarily). 
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The idea is to fix a value of n, and find a range of A so that the drift of R ,  is 
positive. The simplest case is n = 1 ,  where only the site one unit to the right of R ,  is 
considered. In this case there is only one good event: 

A! = {death at R ,  + 1 before birth at R , }  
where A,' denotes Ai,, with x = R ,  and t = U,. If this event occurs, agreeing zeros are 
created one unit to the right of the original position of R , ,  and, consequently, R ,  
moves right. No disagreements could have been created to the left of R , ,  since the 
zeros at v , ( R , )  and & ( R u , )  'insulate' the sites to the left of R ,  from any events to the 
right. If the complement of At occurs, i.e. a birth at R , ,  then we can no longer 
guarantee that events to the right of R ,  will not affect agreement, and we are forced 
to move R ,  to the left. notice that, in any case, death marks to the left of R, can never 
cause disagreement to the left of R,. 

In general, with a fixed n, we will denote good events (those which move R ,  right) 
by: 

GI," = U,A:W 
and bad events (those which move R ,  left) by GP,. Then, is the time of the first 
occurrence of G,,, or Gen. 

Recall that the independent process &, when started from the same configuration 
as the cluster process v,, dominates 7, ( & ( x )  2 r ] , (x )  for all x ) .  This motivates the 
following scheme for moving R, to the left. At the instant the right edge passes a point 
x, we start a process & ( x )  in which the birth and death marks at x act only on x. 
Then, if none of the (good) events comprising GI,, occur, we will move the right edge 
left to the first site x on which the process &(x) is zero. Since each of these processes 
is independent, and each started with initial value zero (recall the right edge moves 
right by leaving a trail of agreeing zeros), we will be able to bound the probability 
that the jump to the left exceeds n + 1 sites by [ A / ( h  + l ) ] " .  

To make this precise, we begin by identifying the time when the right edge R ,  last 
passed from left to right through site x :  

= sup{s: s < t such that R, < x } .  

Note that J,, = T~ if R,  > x for all s E [T, , t]. 

such that 
We now define the processes t : ( x )  using the graphical representation, for all ( x ,  t )  

( i)  x < R ,  (4 r > J , x  

so that a death mark at x induces the transition 1 -+ 0, and a birth mark induces O+ 1 .  
Since vf, . ( x )  = 0 for all x < R ,  , we will take Si, , ( x )  distributed as a product measure 
with P ( t f , r ( x ) = l ) = h / ( A + l )  (so that v j , , ( x ) c & , , ( x ) ,  V x : O c x x R R , ) .  Then the 
configurations of & ( x )  and & ( y )  are independent for x < y < R ,  and for t :  ul s t < U,+, . 
(It would be simpler to just take ( h ,  = 0, but then the sites of 6' are not uncorrelated, 
although the correlations only help us.) 

We will now consider the good event GI,, which moves R ,  right by considering 
events only at sites R ,  and R ,  + I .  We can write the following formula for the jump 
that the R, makes at 

(2) 
where we have used the notation 1 -  to denote the limit of an increasing sequence of 
times approaching t. The indicator functions in the above definition serve to distinguish 

which we denote by .Tu,+,: 
Z , + , = i n f { x - R , :  [ b , + , ( z ) = l  VZ: X < Z ~  R u , } l ~ ~ ; l ~ + l ~ G , , ~  
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between the events where R, moves left or right, and the remaining factor determines 
the size of the associated jump left. We can now write the position of R, as R , + ,  = 
R , + Z , + ,  if this quantity is non-negative; otherwise we restart the argument at the 
next T ~ .  

Recalling that P ( t b ; + , ( x )  = 1 ) s  A / ( A  + l),  that these events are independent of 
Gi.I,  and that P( Gi31) = l / ( A  + l ) ,  we know that R ,  is a discrete-time random walk 
with drift 

where the first term on the right-hand side comes from bounding the jump size to the 
right by one, and the second term is obtained by summing the geometric series for the 
expected jump size left. Requiring that E(ZU,+ , )  > 0, we find that if A E [0 ,  (A- 1)/2), 
then R, is transient, completing the proof. 

An obvious way to improve this bound is to consider events involving more sites. 
(In this case equation (2) is generalised to allow for forward jumps of more than one 
site.) For example, suppose we look at sites R ,  , R ,  + 1 and R ,  + 2, and see exactly 
the following events: a death at R ,  + 2  followed by a birth at R ,  , and then a death 
at R , .  Since the death at R , + 2  insulates the right edge from death marks further 
to the right, we can move R ,  forward, whereas if we had only been looking at R ,  
and R ,  + 1, we would have been forced to move the right edge left. 

Considering (a subset of the possible) events on the five sites R , ,  . . . , R , + 4 ,  we 
are able to show that the process is ergodic for A d 1.01. The proof is exactly analogous 
to the above proof, except that it is much more messy. While further improvements 
are possible, the returns on the labour involved are rapidly diminishing. 

We would like to thank J M Carlson, J T Chayes and L Chayes for numerous valuable 
conversations. The work of EG was supported by NFS grant DMR-8217227A-01 
through the Material Science Center at Cornel1 University. 
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